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Abstract

Probabilistic analyticaiarget cascading (PATC) has been developed to incorporate uncestasatgom
variablesin a hierarchicalmultilevel systemusing the framework of ATC. Ithe decomposed ATC structure,
consisteng between linked subsisms hasto be guaranteed through individual system optimizations
employingspecialcoordinationstrategiesuch as augmented Lagrangian coordinatitmwever the consistency
in PATC has to be treated exploitingcertainty quantificatioand propagationf interrelated linking variabge
that is themajorconcern of PATCIn previous woks, the consistency tihking variables is assured lnyatching
statisticalmoments under theormality assumptionHowever, it can induce significant erravhen the linking
variable to be quantified is highly nonlinear and imanmal. In addition, reliabilitcomputed from statistical
moments may be inaccuraite each optimization ofhe subsystemTo tackle the challenges, we propose the
samplingbased PAT using kernel density estimation (KDEJhe framework of reliabilitybased design
optimization (RBDO) using saping methods is adopted in individuaptimizatiors of subsystem in the
presence ofincertainty. The uncertainty quantification afinking variable whichis an intermediate random
response&an be achieved by shiftéDE. The constructed KDBased orfinite samples ofhelinking variable
canprovide statistical representationslittked subsysters and it carbe utilized in the samplingbased RBDO
through random samplisgat the current design pointFor the proposed samplifmpsed PATC stochastic
sensitivity analysis for KDEs further developedThe proposed samplidgased PATC using KDE facilitate
efficient and accurate predures to obtaia system optimum ifPATC, andtwo examples based on mathematical

function and finite element analygBEA) are used to demonstrate effectiveness of the proposed approach.



1. Introduction

Generally,a largescale complex system such asehicle and an airplane consiss of multiple and
hierarchical subsystems which angricately linked with each othethroughvariables and responsesakingit
challengingto opimize the whole system at once due to atemplexity. Therefore,decompositiorbased
optimization methods with special coordination betwiaghed subsystembave beemlevelopedo optimizethe
largescale complex syste (Sobieszczanski and Haftka 199%exandrov and Lewis 20QZXKokkolaras etal.
2004 Allison et al. 2009Martins and Lambe 201 Bayrak et al. 201,6Cho et al. 2016Papalambros and Wilde
2017).

Analytical target cascadingATC) is one of thedecompositiorbasedmethod where asystem is
partitioned into several hierarchicalbsystms with target and responsgKim et al. 2003ab, 2006 Michelena
et al. 2003 Tosserams et al. 2008008;Li et al. 2008;Han and Papalambros 2QIDorMohammadi and Rais
Rohani 2013Kang et al. 2014 b; Jung et al. 2008In the early stageATC was specializedh hierarchical
decompogion with multilevel subsystembut later ATC withnon-hierarchicaldecompositiorwas proposed as
well (Tosserams et al. 201Mowever, these researches were establishsedbn deterministioptimizationand
thus may not find solutions for actual engineering applicaiiviisenced byvariousuncertaintiesTherefore, it
is obvious to take into accoumbcertainies propagated from subsystems, and uncertdiaged multidisciplinary
design optimization (UMDOyasextensivelyeviewed in the literature (Yao et al. 201®)obabilisticanalytical
target cascading (PATQlas beerevelopedo treat theuncertainties in the framework of AT@®&okkolaras et
al. 2006 Liu et al. 2006 Xiong et al. 201D Especially,PATC using momeninatchingtreats consistency of
interrelated probabilistic characteristics (ilking variable)and the probabilistic constraintssing statistical
moments such awean anctovarian@. This approach is intuitive and straightforwardt bancausesignificant
error when the propagated distribution is highly im@nmal resulting iran unreliable system optimum. On the
other hand, Ouyang et al. (2014) proposeduentiaPATC (SPATC) which combines sequential optimization

and reliability asessment (SORA) (Du and Chen 2004) and PATi@poove its efficiencyby decouping the



triple nested loopn PATC, and extended it to deal with mixed uncertainty including interval variables (Ouyang
et al. 2018)However, reliability obtained from SORA is still inaccurate dugstapproximations, and also MPP
based uncertainty analysis (MPPUA) (Du and Chen 2001), one of uncertainty propagation methods, is still
inefficient for accurate statistical informatioBeveral researchesuggested more efficient and accurate PATC
methods in various ways but without intrinsic modification in uncertainty propagation of linking variables.
Distribution types for the linking variabldgveto be predetermined based on prior Wiexlge that is anajor
weakness of momeimhatching since it can caussignificanterror when aimappropriatalistribution isassumed
Therefore, the proposed reseafobuses on resolving accuracy issuexisting in conventional PATC
methods, especially PATC withomentmatching For this purpose concretdramework called samplingased
PATC usinguncertainty propagation specialized lioking variablesis proposedThis allows each subsystem to
be opimized more accurately under the schemghesamplingbasedRBDO and makerandomlinking variables
consistent between subsysteifisus kernel density estimatiofiK DE) to transferuncertaintyof linking variables
more accurately toorrespondingubsystemandits stochastisensitivity analysiso performthesamplingbased
RBDO aredevelopedn this study Propagation and coordinatidor three types oflesignvariables, which are
local variables, coupling variables, and shared variahtestrictly defineddependingon how t is manipulated
as consistencgonstrains. Consequentlhthesamplingbased RBDO and augmented Lagrangian coordination and
alternating direction method of multiplsfAL -AD) aresuccessfully combinelly applyingKDE to connect both
methodologiesln other wordsindividual optimizatios of ATC areperformedusing thesamplingbased RBDO
to obtainan accurate optimum, angDE connecs individual optimizations to safy consistency constraints
instead of momenmatchng.
The artick is organized as followsriBf reviewsincludingexisting PATCandsamplingbasedRBDO are
presented in Section B Section 3, the proposed methiséxplained withkeyideasof the new frameworkr hen,
feasibility andeffectivenes®f the proposedrameworkareverified in Sectiors 4 and 5 Conclusionand future

research argiven inSection6.



2. Overview of Conventional Analytical Target CascadingM ethodologies
2.1 Non-hierarchical Analytical Target Cascading(ATC)

The proposedesearch is originateflom the norhierarchical ATC withoutt multilevel concept to treat
more common structure therealworld (Tosserams et al. 201®arentchildren subsystesdefined undestrict
conditionswith respect to linking variabésareunnecessaryn thenon-hierarchical ATCReades canreferto the
literature(Kim et al. 2003a, b; Tosserarasal.2006)for detailed descrijpons of hierarchicalATC. Any linked
sulsystemin the non-hierarchical ATC camommunicate witlothersubsystemslirectly without any restriction.
General structure describitige relationship between nelgtrs (i.e. linked subsystemsis illustrated in Figure 1.

Optimization ofa Subsystenj in the norhierarchical ATC can be formulated @®sserams et al. 2010)
rr;infj(ij)+a'p(tnj 1) A M, ) where g¢)vie= |1No¢||§
) n R mi T
subjecttag; %, ¥ Oh, % )=0 (1)
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where ?J- represents thelesignvariables forthe Subsystemj, X; representghe local designvariables,r,
represents theesponses correspondinghetargett,; from theSubsysterm. Similarly, t;,, represents therget
corresponding tdhe responsd’,; which is transferred fronthe Subsystenm. The functionsfj 95, andhj
representhe local objective, inequality, and equality constraint functions, respectiVélgfunction 4; is used

to compute responses aBg is a binary selection matrix that selects componteats ;. Thez symbolmears
a termby-term multiplication of vectorsThe augmented Lagrangiacoordinationis applied in Eq. (1jvherev
is the Lagrangenultiplier vectorand w is apenalty weightector. It should be noted thabth X; and X; in Eq.

(1) are deterministic design variables.
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Fig. 1 (a) Functional dependenstuctureof nonthierarchical ATC and (b) Target and response flow between

Subsystenj and its mighbors (modified from Tosserams et al. 2010

2.2 Probabilistic Analytical Target Cascading(PATC) using Moment-matching

PATC using momenmatchingcombinedwith AL-AD can be formulated agnodified from Liu et al.

2006 and Tosserams et al. 2006)

Giveneg u i Em u

oy
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where)_(j is the random variableectorin the Subsystenj. Among the random design variablé(sj, is the local

design variablerectorin the Subsystenj with known parametric diributiors. Also, ij is assumed to followa
normaldistribution forsimplicity with the first two moments from ttgubsystenm, which is denoted a§ ,;; and

flmj , respectivelyln contrasts R ,, is the probabilistic response to be computed irStlizsystenj, andstatistical



momentsare used in the consistency constraiftso, the probabilistic constraints argtimatedby the moment
matching method wheleis constant corresponding to the gitargetreliability level.

The momenimatching methodhas two accuracyissues. First, thdistributiors of all matchingquantities
and constraintaeedto beclose tathenormaldistributionin order for the method to be accuradecondthe first
two statisticalmoments shoulttavea dominatingimpact on the optimur(Liu et al. 2006) However, thesévo

conditions mayot be always satisfied in real engineering applications

2.3 Reliability Analysis and Sampling-based RBDO

Reliability analysis to consider thumcertaintiexan be categorized in general into analytical and sampling
methods. The analytical methdusvebeen developed using approximated performance functions (Breitung 1984;
Tu et al. 1999; Adhikari 2004; Lee et al. 2008, 2012; Lim et al. 2014; Kang et a). ZIri the other hands, the
sampling methodmainly userandomsampling in the probabilistic domafpenny 2001; Rubinstein and Kroese
2016) So, design optimization using the sampling method for reliability analysis is called sabgsid)
reliability-basd design optimization (RBDO) which is mainly employed in the paper due to its accuracy compared
to the analyticamethods(Lee et al. 2011a, b; Dubourg et al. 2011, 2013; Cho et al. 2014; Bae et al. 2018)
Reliability analysisandstochasticsensitivity analysis ardteratively performedin the samplinghbased RBDO to
deal with probabilistic constraintgnlike PATC using momentatching which uses the first two moments of the
subsystemshe proposed meth@pplies the samplingased RBDO tindividual optimizationsof thesubsystems

In the samplinghased RBDO e probability of failure can be computed fsee et al. 2011a, b)
Rt HAX) B Al () k)& B3, (X))
o , I’
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r {0, otherwise
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where P[] and E[1] represent a probabilitgnd anexpectationmeasure respectively G(x) is the constraint

functiort W. is the failure set definedas G(x) >0; f, (x) is the probability density function(PDF) of X .



Moreovet sensitivityof the probability of failurds obtained through the stochastic sensitivity analysik the
first-orderscore functiorusingPDFsof randomdesign variablesSincethe reliability analysis in Eq. (3gquires
a large number of samplingsurrogate modelings oftenempbyed inthe samplingbased RBDO Surrogate
modelingmethodsandsampling strategie&haoet al 2011; Chen et al. 2015; Liu et al. 206 beyond the
scope of the papefmhe papewill focus on howto constructan overall frameworkby connecting PATC and

RBDOto alleviate theaccuracyissuedn the conventional PATC

2.4 Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric way to estioraterlyingPDF of a random variable
based osample pointérom thetrue but unknowrdistribution(Chen 2017; Silverman 20183the summation of
kernel functions generated bye sample pointsThus, he estimated kernel density function can be expressed as

X - X
h

L1
E(X)_ﬁg k( ) 4)

wheren is the number of sampleX,, X,,..., X, areindependent, identically distributed random sarspléh

density functionp, k(u) is the kernel functiorsatisfying ﬁ k(u)du=1, andh is the positive smoothing

parameter (i.e., bandwidthit can be seen from Eq. (4) thhe kernel functioronly depends on themoothing
parametewith the given samples. In this research,usea secondorder Gaussian kernel function whichithe
mostpopular kernel functionThesmoothing parametavill be computediusingthe Ruleof-Thumbsincethetrue

distributionof alinking variableis unknowngiven by(Silverman 2018)

1
] - = 1
h=§e‘;— 0 o106k s (5)
¢on =

where & is the sample variancend n is the number of sample$he Ruleof-Thumb assumed that thrue

distribution is close tthe normaldistribution but it givesa plausiblePDFfor anytruedistribution. The detailed



description oKDE and methods to determiag@ optimal smoothing parametéo reduce mean integrated square

error (MISE)can be seeim the literatur§Chen 2017; Silverman 2018).

3. Sampling-basedProbabilistic Analytical Target Cascadingwith Kernel Density Estimation
3.1Terminology and Remarks

First, eachvariableand functionfor the proposed methddaave to bedefined specifically and cleaty.
Assumingan extensie system with multiple subsystemthreetypes of variables can beclassifiedin the
decomposed subsysteniy local variable that belong to a singlesubsystenonly, 2) coupling variable that
behaveas design varialdgn asubsystem and assponsgin the corresponding subsysteamd3) sharedrariables
which aredesignvariablesin bothlinked subsystem€ouplingand sharedariables arecalledlinking variables.
In order to prevent confusion in defining coupling variables, a coupling variable as a design variable is denoted as
a cowling variable and a coupling variable as a respondernstedas a coupling response hereafter. Detailed

notations to describe the proposed formulation are listed in TdBlaphlambros and Wilde 2017

Table 1 Detailed description of notations in the proposed framework

Notation Description
X Random local variable iBubsysten)
XSpredn X o Random shared variable betweRibsystenj andSubsystemn
XJ.Crf”p 1 Ynjc"”’J Random coupling variable Bubsystenj andcouplingresponsén Subsystemm
Y;"“” 1 Xj"”p Random coupling responaeSubsystenj andcouplingvariablein Subsystenn
yr Realization ofY;™" received fromBubsysterm
X, ={X [, X o e Random design variable Bubsystenj
z(m? Two-parameter distribution
B(X""; sy) Kernel density estimation witlespect teshifting parametes and sample
IEjn Approximated response function to compute coupling resphiﬁ%in Subsystenj

T

J- Approximatedperformance function for constraintsSubsysten)



P target Target probability of failure irsubsysten)

v Lagrange multiplier
w Penalty veight
fi(m ) Local objective function iBubsysten)

On the other handhé coordination algorithm of ATC can be divided into the inner loop and the outer loop
to achieve convergence and consistency of the system optimum. In thivaménrdividual optimizations of the
subsystemnare conduced in the presence dfiven parametrs without any communication. In the outer loop,
Lagrange multiplierand penalty weightare updated, and linking variablasetransferredin the perspective of
the doubleloop scheme, the samplitgasedRBDO and surrogate modéhg are performedin the inner loop of
ATC, and uncertainty propagatids performedn the outer loogsinceuncertainies of linking variables will be

propagéed after RBD@ of all subsystems.

3.2 BasicFormulation for Sampling-basedPATC: Inner Loop
3.2.1 Formulation
In this sectionsamplingbased RBD®f ageneal subsystem and how to establish consistency constraints

between linking variableareexplained The proposed optimization formulation of a subsysiéth three kinds

of consistency constraintsin be expreed as
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wherez means any parametric distribution with tyarangters  is shifting kernel densit;estimation,(’.Erj and

FEj are Kriging surrogatemodek to approximateexpensiveperformance functiorGj and coupling response

Coup - . . T . .
Yi * in subproblenj, respectively. The probabilistic constraistre evaluated usirig. (3) andthe augmented

Lagrangian coordinatiois used in the formulation to reduce inconsistency bet\leking variables

The objective function in Eq. (6) includes a penalty function regarding three types of consistency

constraints First, p( /(Iy°°””) € o) IS associated witha coupling variable in Subsystemj and a coupling

response iBubsystenn. My5"") is the sample mean & which is the realization of the randasoupling

responseeceived from the&Subsysterm, and¢ .., is the shifted mean usifgDE based ory(n:jouP. The second
in

term p(& o - /(IYC°””)) also corresponds tocoupling variable iran oppositevay. Itis a couplingvariable in

Subsystern and a coupling response igubsysteny. The third termp(€ s - €, swe) 1S relatedto a shared
nj in

variable. Because distribution of the shared variable is known, uncertainty propagation usisgiDtecessary.

Only the design point which is tlmeeanis used inthe consistencyonstraint.

11



3.2.2 Subsystem Composition
Detailed omposition of a general sulsgm is illustratedn a singlesubsystemin Figure 2where
subscrips concerning the subsysteaneomitted.A vector oflocal variablesis denoted as<"*® which contains

all random local variableé vector ofsharedvariablesis denotecas X 5"

imposed to be consistent with linked
subsystemsA vector of coupling variabteis denoted a¥“”. Sinceit is nota designvariable in the system

level, variability of X“°* should be assigned blyecorrespondingubsystenas a coupling respont@ough KDE

On the other hands, respostebe computed in the subsystem can be categorized into performance &arution

coupling response Theperformance functiols™" is involvedin probabilistic constraints for the optimization,

and the couplingesponseY “* is computed to propagate uncertainty.

Composition of Subsystem

( Local Variable ) CUE D G Gl \
Coupling Variable X = {X[™" X" Design Variables
x,Coup
Shared Varible Xared = g x Shered | X i’]’_‘"j"}
Coupling Response {YCoup e Kq(ljtzzr;; } — YCmrp (XLocm’ , XCOH‘D , X_S-};amd )
o Responses
\Performance Function G ,....G, ‘f’fff} = G (X hoeal X o X Sharedy j

Fig. 2 Composition ofageneral subsystem

Figure 3 shows aimple examplewith three subsystem&ach subsystem has own local varigbéad
there are two coupling variatsland one shared variablEhe arrow between two subsystamanghe consistency
corstraint Subsystera 1 and 2 are linked witha coupling variable. fie couplingresponseén Subsystem 24s

propagated tdsubsystem Iwith the distributionin red and Subsysten 1 is optimizedwith the propagated

12



variability of Y, returning M., t0 Subsystem 2. Therefore, the consistenoystraint can be expressed as

ﬂ;lczoup - 2C1°”p) . Identical explanation can be applied foerelationshipbetweenSubsystems 1 and\8ith the

distribution in blue.On the other handSubsystems 2 and 3 are linked wihshared variablenly whose

distribution is alreadknown Henceits mean is transferregthich meanshe consistencgorstraintis denoted as

nz< Shared ~ ,)pshared .
23 32

Subsystem 1
Xli.umi ngmw X‘(;m,l)

™ . s
Subsystem 2 /ux-;;"”“’ Subsystem 3
X_[ rrrrrr W X.;-;:m'::u‘ - X‘J'.mu/ X;}hurmﬁ
Coup _ Local Shared Conp _ Local Shared
Yz\ - R:{ Xz ’ Xz} ) ) #){ Shared \_ Y‘-l - RR( XR : X‘-I )
32

Fig. 3 Flow of linking variablesdbetween linked subsystems

3.2.3 Surrogate Modeling

Surrogate modeling istilized in the proposed PAT@amework especially inthe inner loopto alleviate
expensive computational codtor further efficiency improvement, sequential sampling strategies are oftern
combined with surrogate modelinghe corstraint boundary sampling (CB®) adaptedn this studyto enhace

accuracy anefficiencyof surrogate model3.he CBScriterionis formulated agLee and Jung 2008)

et (X o = .
CBS=iia='1f(‘/MSEr)CD T3 o | (7)
,l 0 otherwise
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where D is the minimal distance from the current sample point to the existing sample poings(ands the
mean of theKriging model atthe currentpoint x and MSE indicates the variance of the current samptant.

For further improvement in efficiency, thacalwindow concept with CB&asbeenemployedChen et al. 2014)

One important thing tbediscusseavhenusing surrogate models is that tlesignspacecan bepartitioned
in the ATC structure. This means that higiimensionaldesignspace can be decomposed into several low
dimensionaldesignspacesand unlike existing AT, it may be efficient thaevenAll-in-One @iIO) which
optimizes the entire systemaicein the highdimensional design space since the number of samplings to achieve
acceptable level of accurcay incremsxponentiay with dimensions, calledithe cuse of dimensionality.

Effici ency comparison with AiO iseyond the scope of the papso we will use itfor referenceonly.

3.3Uncertainty Propagation and Sensitivity Analysisfor Kernel Density Estimation: Outer L oop

3.3.1 Shifted Kernel Density Estimation

In the outer loop of the proposed PATC, mean vectors including local, shared, and coupling variables and
nonparametric distributions of coupling responses have to be exchanged, and the corresponding Lagrange
multipliers and penalty weights are appropriatgbdated using AMAD. Even though the samplifgased RBDO
can be adapted into the optimization of individual subsystems, ATC structure dtasiisking variables
transferred from linked subsystems. Therefore, the uncertainty propagation of the lariadpy thekey concept
of the proposed framework, have to be developed preferentidiig. section introduces how to propagate
uncertainties of coupling variables.

A coupling variable is nad random design variable in the systauel but anintermediate response due
to decomposition which ia function of design variablesherefore, uncertainty quantificatiaf a coupling
variable is indispensabler reliability analysisand consistency constraintsowever,explicit expression of its
uncertaintycannotbe achieed In the proposed methodncertaintyquantification angbropagation o coupling

variableareconductedusingKDE. KDE with a set ofgivensamples carepresenanonparametric distribution as

14



Coup _

Yii X

B (x ﬁioup):n_lré )
where k (1 ):%2,0 exp(—;u2 ) (8)

yfi"”pz R(X) fori =1,2,..n
where ﬁ (X) is theestimatedPDF of the couplingresponseR, (X) computed inthe corresponding subsystem

andn is the number of samgs. If the coupling variabléas to estimatePDFfrom a linked subsystenasEqg. (8),
it should be shifted based dhe currentdesign point. It means that statistical characteristich@toupling
responsaremaintained except for the design pdiing., mean)In consequencehe PDF of a coupling variable

through KDE andh shifting parametecan be expressed as

ol = ol ol 1.0 S( y:,ioup’nzcr’“p)_ X
X7 = B 06 men)y 0= 8 K ) ©

where s (7 Mewo yor -y eo) 8

where y*>* is thei-th realization ofthej-th coupling response frottie linked subsystem my“®) is the mean
of yiiP ={y 7" yS"..y°F, and IQJCM is the design point o& corrspondingcoupling variable. Through the

shifting of thesamples, only theumericalexpectation oKDE is changedSilverman2018) In the proposed
method, the consistency constratdan bearranged with the mean, but uncertainties are transferreal as

nonparametriclistributionwithout loss ofanystatisticalinformationunlike PATC using momesmnatching

3.3.2 Sensitivity Analysis for Kernel Density Estimation

To perform samplingbased RBO in the proposedPATC, stochasticsensitivity for probabilistic
constraintsith respect to random design variableed to beestimatedccuratelyWhen distributiosof random
design variables are known, stochastic sens#satsing thefirst-orderscore functiorwith respetto the mean

areobtainedeven ifinput random variables aporrelated (Lee et al. 2041b; Cho et al. 2016 However since

15



KDE is usedn the proposed PATC to approxim&BFsof coupling variabls, analytical sensitivity analyster
KDE is derived in this sectioandits accuracy is verified usirthefinite difference metho@~DM) in Section 4

Sensitivity of probability of failure with respect tthemeanof theindependentandom variabléncluding

localand sharedariables whose distributions are known is obtairaed

WR(e) _ 1 o (0 F, (x:e)dx
um F

o o Hh)
ﬁwF (x) w X

_ HIn f, (x;€) ¢ .
. (%) o f, (x;e)dx (10)
= Efl,, (0 KN 068
F wn
where §1 pin £, (e)

wm
X ={X Local1 X Share}

wheres‘,,l,) is the firstorder score function fanean(Lee et al. 2011band directly obtained from the known input

distributions In case of independent coupling variabtbs, firstorder score function d€DE with respect to mean
can be derived as

pin f, (x;€) , pin B (x;h)

wn va 3 5
_unppg 0B Ko, B XN
woom o m X MW mp
SN X- X 2y
= e
2 V2ot (9

- 1,0, x-%. 1 1 2% 1 SRy
where =—af = ez h *.
s A ) S '

m=X1+X2n-|:.. *x

X={ %, X, }={YSP -y <) vl

K:l
wn
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where X is theshiftedsamplea of a coupling respons@ndh is the smoothing parametebtainedusingEq. (5)
It is noted that all data ashifted simutaneouslymeaning thathe partial derivative with respect to the mean is
one.Pluggingthe firstorder score function d{DE with respect to independent random variaiesq. (11) into

Eq. (10)yields sensitivity oprobability of failure for coupling variable.

3.4Flowchart of Methodology

This sectionexplains the proposedlgorithm in detailusing a flowchart and conceptionalsystem
framework. Figure 4 describethe overallflowchartof the proposed PAT(Hrst, deterministic optimizations of
individual subsystemspdatng Kriging modes have to be performeiteratively while the Lagrange multiplier
and the penalty weightare updatedising AL-AD. Oncethe deterministic ATGucceasfully convergs to the

optimum it becomeghe initial point of the samplinrgased PATC.

17



v

Solve all deterministic
optimization of subsystems

No Model update with

sequential sampling

Accurate models?

Lagrange multiplier and
penalty update

No
Converge?
v

Yes

Solve all sampling-based
RBDO of subsystems

No Model update with
sequential sampling

Accurate models?

Uncertainty propagation
for linking variable

!

Lagrange multiplier and
penalty update

Converge?

Fig. 4 Overall flowchart ofthe proposed®ATC

Figure 5 shows a conceptional system framework of a vehicle example tisiagsubsystem model with
own finite element analysis (FEA) model foerformance computation. Subsystem 1 for thehicle body model
is influenced bysubsystems 2 and 3 for thehicle component models beca@sbsystems and 3 have coupling
responses which are coupling variableSitsystem 1. It is shown that FEA is performed only on the specific

sampling points, and the samplibgsed RBDO is performed using the Kriging msdEkpecially the linking

18



variable is propagated Bubsystem 1 through KDE, and then reliability analysis and sensitivity analysis will be

carried out iteratively.

Kriging model Sequential sampling

Subsystem 1

N-dimensional space
Sampling-based RBDO
P, = j’/ uman E1, (X))
1

= Z’\'

Uncertainty J Summny ang \lym Uncertainty
ropagation 2= T ropagation
propag Zvﬁnhf(\) ) p
ATC outer Ioop(Lagrange multiplier update)
Shifting \

" : mformatmn S :
Linking variabl r v,
inking variable "g0 o ctem 2 Subsystem 3 Linking variable

M-dimensional space
Samplmg -based RBDO

1 v/\l m(v.w. X, X")
P, <P

L-dimensional space
Samplmg hascd RBDO

in S(X)+x(v,w, X.X")

Sequential \H, ¢ e/ Sequential

B plls

S Kriging
FEA model ‘f model FEA model

Fig. 5 Systemframework ofthe proposed methodolodyeproduced from Altair Hyperworks

It is shown that three subsystems have divided dimensions such as N, M, and L in Figure 5. As mentioned
in Section 3.2if these three subsystems combine into a single systerngtahdimension is definitely less than
N+M+L due to the duplicated linkg variables. However, the number of sampling pointsingle high
dimensional spackr satisfying acceptable accuramay belarger than several log@imensional design spaces.

For instance, wheal5-dimensional system may be decomposed intoSalimensional subsystems, the number
of samplings to construct the surrogate model odifrifensional design space is expected to be much larger than
decomposed -Himensional design spacebhis could be one application of the proposed PATC to improve

efficiency of high dimensional larggcale design optimization problems.
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4. Numerical Example: Three-dimensional M athematical Example

A threedimensionalmathematicalexampleis employed to demonstrate feasibility of the developed
framework compared tAiO andPATC usingmomentmatchingin termsof acaracyandefficiency. In addition
the proposedensitivity analysis foKDE is comparedwith FDM. It is expeced that the proposed framework
showscomparablefficiency in the decomposed ledvmensional subspaces thtae high-dimensional AiO space
and high accuracy through thencertainty propagation afionparametric distributieanwithout any loss of

informationunlike the momentmatching method.

4.1 Formulation of Three-dimensional Mathematical Example

RBDOwith thethreedimensionakystemnis written as

min f,(m)+ f,( 29
s.t PrlG (X)> 0] ¢0.05 fori=1,....5

(”; t; '10)2 ( UL /771@)2 ”27 ZX
h f 1 2 1 2 ,f N 2
where f, (i F 30 120 2 (1) 7m J‘—lo
2
G, (X)=1 21 Xe

20
G,(X)= 1 0.9063X, G:422&, 6) (019068 04236 °6)  (12)
0.6(0.906X, +0.4226X, -6 + 0:4228, 019068, )

80 X2 2X72- X
GX)=1 ———,G =2 2
s(X) X2 +8X, 6 +(0) 20 10
2 _ 2 _
(X3+M _10)2 (X, M 1@)2
G.(X) =1 10 10
30 120

X; =~ N(m, ,0.5) fori =1,2,3

where threeandomdesign variablefollow the normal distributiorandthe target probability of failure is set to
5% in allconstraintsGenerally ATC assumethat Eqg. (12)s a system optimization which cannot be savin
AiO strategy.Thus, Eq. (12)s usedto validate thesystemoptimum and compare computational cash the

proposed PATC
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4.2 Formulation of Decomposed Thre@imensional Mathematical Example

The decomposed structure through the prop&isedework is described in Figuré which showthree
types of design variables and twypes of responses. There %0 shared variabjandSubsystem 1 haacoupling
responseand Subsysten2 hasthe corresponding coupling variabl&hereis one consistency constraiwith

respect tahecoupling variable vanished in the systével optimizationn Eqg. (12).

/ Subsystem 1 \ / Subsystem 2 N

x!.::(‘m‘ — {)(l’)(2 } ﬂX_‘ Xh:m.’ _ {X3}

XCuitp — @ < X('onp — {Xl}

X.S'i'rm‘ed = P> X.S.’Mi'ed‘ =&

GF@(‘;’ — {G] (Xl,ﬂar] )! GZ(XI,nCa] ), G} (X.’,m‘m’ )} yl GPerj - {G4 (Xlan’n’ , xCﬂnp ), G5 (Xlarax’ , metp )}

\Y(bup — {YI(XLocm’)} / \Y(.'onp ) /

Fig. 6 Structure of decomposed subsystems

The optimization oBubsystem 1s formulated as

(m, + g A0 (ym -, m18f

o 30 120 AL 5
s.t PriG X)> 0] ¢0.05 fori=1,2,3

X2 X
where G 1--1°2
K F 20
G,(X)= 41 (0©.906X, :422&%, 6) (09068 0.42%5 °6)
0.6(0.906X, + 0.422K, - &) - ( 0.4226+0.9063, )
80
XZ+8X, 5
2X2- X
Y (X, Xz)=f
X,~N(m_,0.5)
X, ~N(m,_,0.5)

XLocaI :{Xl, X?}, XCoup — ,AX Shared = ﬁ Coup { \i:

(13)
G;(X)=1
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whereY,( X,, X,) is the coupling response to be transferre@ubsystem 2The consistencgonstraint using

m(Y,) and m is combined into the objective function apenalty function. Only local variables amandom

design variables iBubsystem 1.

Similarly, the optimization oSubsystem 2s formulated as

min - m + g + PO - )m

Meys K,
s.t PrlG X)> 0] ¢0.05 fori=4,5
X2X
h 1--3°4
where G, K F 20
2
G.() =1 (X, + X, 40Y (X, X, 18y (14)
30 120
X, ~N(m_,0.5)
- 1.0 S(y|! )- X
X~ BO=Ta K2 for (y) =y Aty

XLocaI :{X?}, XCoup :{ X4}1 X Shared - ,N Coup — A
where X, is the coupling variable propagated froBubsystem 1 and its uncertainty is described #igshifted

KDE explained in Sectio.3.1. There are two random design variabldsch arealocal variable and coupling
variable with no coupling response, and other properties are analogousSwigystem 1. It is noted that

Subsystems 1 and 2 can be combined with substitutitrecbupling resposeY, ( X,, X,) asafunction of design

variables

4.3 Validation of Sensitivity Analysisfor Kernel Density Estimation
In this section, accuracy of the proposed sensitivity anagys@mpared with numerical sensitivity analysis

using G, and G, in Eq. (12). Variability of X, is quantified byKDE with 50 sampés drawn from thé&nown
parametricdistribution and X, is assumed téollow a normal distribution Comparisortestsare performedby
varying thetrue distribution of X; such asNormal, Lognormal, andGumbel distributions and he resultsare

comparedo FDM with variousperturbatios such as 1%, 05%, and 01%. The number of samgd drawn from
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KDE andthe normal distribution to computie probability of failure is 10 attwo differentdesign points which
ared, =[4.56,1.86] andd, =[4.32,1.95] with S =0.5 for both random variables.
Table 2shows theesultsof the propose@nd numericasenstivity analysis forG, and G, in Eq. (12)

Discrepaniesbetweertwo sensitivityanalysis results case of 0.% perturbatiorarealsoshownin parenthesis
The numerical sensitivity analysis is performesing fixed random seed teliminatesampling uncertainty, and

the proposednethod shows accurate results regardlesisadfue distribution type or design poimbcation

Table 2 Results of sensitivity analysigith numerical and analytical methods

True Distribution '
of X, ngssi'lt?vrilty G, atd, G, atd, G, atd, G, atd,
FDM (1.0%) -0.0975 0.0823 -0.1287 0.0275
Normal FDM (0.5%) -0.1006 0.0798 -0.1314 0.0264
FDM (0.1%) -0.1027 00774 -0.1346 0.0249
Proposed -0.1020 (068%) 0.0764(1.30%) -0.1351 (0.3%) 0.0250 (0.4%0)

FDM (1.0%) -0.0987 0.0768 -0.1305 0.0291
Lognormal FDM (0.5%) -0.1012 0.0742 -0.1340 0.0278
FDM (0.1%) -0.1037 0.0724 -0.1395 0.0272

Proposed -0.1026(1.07%) 0.0721(0.41%) -0.1365 (2.19%) 0.0270 (0.74%)
FDM (1.0%) -0.0951 0.0784 -0.1338 0.0339
Gumbel FDM (0.5%) -0.0975 0.0761 -0.1370 0.0333
FDM (0.1%) -0.1012 0.0752 -0.1381 0.0330

Proposed -0.1001(1.09%) 0.0727(3.43%) -0.1401 (1.42%) 0.0322 (2.58%)

4.4 Resultsof Sampling-based PATC

AiO samplingbased RBDQesultsusingEq. (12)arelistedin Table 3.Initial sampés are obtaied bythe
grid sampling on the whole design spaaéh different levels and the omber of sequential samplings means
additional samms during the optimization. There are five constraiamsong which oly three are activeThe
probability of failure computed frorthe exactfunctions is written in the last columnfor each caseDefinitely,
AiO shows high accuracy, but requirgaumber ofsequential samplirgyegardless of the number of thmtial

sampes

Table 3Requiredsampés and optimums obtained from AiO with different initial sampling
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Initial grid sampks Additional samplkes Optimum Probabilityof failure (%)

125 (5-level) 50 {3.7549, 2.6423, 4.0267 [5.00, 5.01, 4.98]
64 (4-level) 48 {3.7541, 2.6461, 4.0300} [4.96, 4.97, 5.03]
27 (3-leve)) 51 {3.7539, 2.6446, 4.0281} [4.99, 5.00, 4.99]

As mentioned beforehe proposed methodsesthe optimum ofdeterministicATC astheinitial design
In each 2Dsulbsystem, grid samplingith 5-level full factorial desigis adoptedo generaténitial sampks, which
means that 25ample& are used to construct initial Kriging models the constraints and coupling resporese
shown in Fyure 7 The solidand dotted linef the figuremean the truandapproximated limistate function

by theKriging model usind5 grid sampésmarkedas blacksolid circles, respectively

Py
@

[ ]
[ ]

10 H 3 H csua,

\ [+ Const A(Kriging)
' : 3 : % [#=e=e Const.2(Kriging)
i Const.3(Kriging)

F, Const.1(True)
. R | = Const.2(True)
Const.3(True)

L gl
@

10

Fig. 7 Trueand approximated limistate functions ilsubsysteni

Using theapproximated limistate functiosin Figure 7, the proposed PATC is performed based on the
algorithm in Figure 4. The tolerance for convergence is sb8 tt0®, the number oMCS samples i%3 10,

and the number of samples for the stochastic sensitivity proposed in Section 308.2Ai initial Lagrange
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multipliersand penalty weights are set to 1 and 0, respectigefixed local windowwhose radius i9.3b, for
deterministic ATC and..6, for PATC is usedor simplicity.

Figure 8 illustrates additional samap)] updated Kriging model as dotted lines, and the design point in
Subsysteni at the end of each procadsATC and samplingpased PATCIt is shownfrom the figurethat the
additional samples are locatexthe vicinity ofthelimit-state functionsTable 4 showsptimization resultef the
proposed methodkrom Table 3&4, it can be seen thdtd optimunfrom the proposed PATIS very close tahe
onesby AiO, and the number dbtal sampes for the proposed PATI€less than AiGn the 5level grid sampling
case From Table 5which shows optimization results BRATC using momentnatching it can be seemhat
probability of failure at the optimum is inaccuratee to the normality assumptiam the coupling variable
comparedwith the proposed methodt. is notedthat only mean is used to construct the consistency constraint
since the standard deviation gde zero during PATC using momematching. Therefore, the standard deviation
is merely given from SubsystemHigure 9 shows difference between tmethods in estimation of distribution
of the coupling variableThe difference is because PATC usmgmentmatchingassumes the distribution as
normal distribution withestimatedmean and variancevhereasthe proposedPATC estimates the distribution

usingKDE. Moreover, thaifferencewill be larger amnon-normality of the coupling variable is muchidar.
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Fig. 8 Optimum andadditionalsampes in the design space 8fibsystem 1(a) ATC (b) Samplingbased PATC

Table 4 Optimization result®f the proposedsamplingbased PATC

Subsystem 1 Subsystem 2

Initial grid sampés 25 (%) 25(5?)
Additional sampesduring ATC 10 2
Additional sampésduringPATC 6 6
Total sampgs 41 33

Mean of coupling variable 2.6056 2.6033

System optimum {3.7550, 2.6438, 4.0323
Probaility of failure (%) [5.02, 4.95, 5.1

Table 5O0ptimization esults ofPATC using momeninatching

Results
Momentsof coupling variable m=2.6676, & =0.764
System ptimum {3.7970, 2.5855,4.0660}
Probability of failure (%) [5.06, 3.89594]
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Fig. 9 Distribution of coupling variable in case of PATC with momaratching and proposd@ATC

5. Engineering Example: Roof AssemblyOptimization

An engineering example incorporating FEAodek is employed to verify feasibility othe proposed
methaodin real complex engineering applicatioidisexamples originated from the optimization afbus body
structure (Kang et aR014h and modified by Jung et aR@18 for simpilification. In this paper, optimizatioaf
thecomponergi crosssectiors of beans1 is refined to increase the number of design variables. There is a roof
assembly optimization to satisfy displacement constraints with resptuw bending andorsionas shown in
Figure 10(a). On the other hand, the roof assembly cameistarious types othe beans, andtwo types of 1
beams used in the roof assemsitywn in Figure 10 (reselectedor optimization Thus, there are skandom
design variableén eachcrosssectionof the beam, and linking variables dhe crosssectioral area and two
perpendiculamomens of inertia (MOI) of the crossection described in Figure 1h.the roof optimization, the
objective function is a penalty function for consistency constraints, and design variables are coupling variables
that are MOllinked with each beam without any local and shared variable. In the optimization of beam, the
objective function is mass and penalty function for consistency constramdsthere are only local variables to

be optimized.
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(a) (b)

Fig. 10 (a) FEA model of aoof assembly including various beams and (b) design vasiaiblee crosssection
of I-beam

Fig. 11 Decomposition details for a roof assembly optimization with two types ofdream
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