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Abstract 

Probabilistic analytical target cascading (PATC) has been developed to incorporate uncertainty of random 

variables in a hierarchical multilevel system using the framework of ATC. In the decomposed ATC structure, 

consistency between linked subsystems has to be guaranteed through individual subsystem optimizations 

employing special coordination strategies such as augmented Lagrangian coordination. However, the consistency 

in PATC has to be treated exploiting uncertainty quantification and propagation of interrelated linking variables 

that is the major concern of PATC. In previous works, the consistency of linking variables is assured by matching 

statistical moments under the normality assumption. However, it can induce significant error when the linking 

variable to be quantified is highly nonlinear and non-normal. In addition, reliability computed from statistical 

moments may be inaccurate in each optimization of the subsystem. To tackle the challenges, we propose the 

sampling-based PATC using kernel density estimation (KDE). The framework of reliability-based design 

optimization (RBDO) using sampling methods is adopted in individual optimizations of subsystems in the 

presence of uncertainty. The uncertainty quantification of a linking variable which is an intermediate random 

response can be achieved by shifted KDE. The constructed KDE based on finite samples of the linking variable 

can provide statistical representations to linked subsystems, and it can be utilized in the sampling-based RBDO 

through random samplings at the current design point. For the proposed sampling-based PATC, stochastic 

sensitivity analysis for KDE is further developed. The proposed sampling-based PATC using KDE facilitates 

efficient and accurate procedures to obtain a system optimum in PATC, and two examples based on mathematical 

function and finite element analysis (FEA) are used to demonstrate effectiveness of the proposed approach. 
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1. Introduction  

Generally, a large-scale complex system such as a vehicle and an airplane consists of multiple and 

hierarchical subsystems which are intricately linked with each other through variables and responses making it 

challenging to optimize the whole system at once due to its complexity. Therefore, decomposition-based 

optimization methods with special coordination between linked subsystems have been developed to optimize the 

large-scale complex system (Sobieszczanski and Haftka 1997; Alexandrov and Lewis 2002; Kokkolaras et al. 

2004; Allison et al. 2009; Martins and Lambe 2013; Bayrak et al. 2016; Cho et al. 2016; Papalambros and Wilde 

2017).  

Analytical target cascading (ATC) is one of the decomposition-based methods where a system is 

partitioned into several hierarchical subsystems with targets and responses (Kim et al. 2003a, b, 2006; Michelena 

et al. 2003; Tosserams et al. 2006, 2008; Li et al. 2008; Han and Papalambros 2010; DorMohammadi and Rais-

Rohani 2013; Kang et al. 2014a, b; Jung et al. 2018). In the early stage, ATC was specialized in hierarchical 

decomposition with multilevel subsystems, but later ATC with non-hierarchical decomposition was proposed as 

well (Tosserams et al. 2010). However, these researches were established based on deterministic optimization and 

thus may not find solutions for actual engineering applications influenced by various uncertainties. Therefore, it 

is obvious to take into account uncertainties propagated from subsystems, and uncertainty-based multidisciplinary 

design optimization (UMDO) was extensively reviewed in the literature (Yao et al. 2011). Probabilistic analytical 

target cascading (PATC) has been developed to treat the uncertainties in the framework of ATC (Kokkolaras et 

al. 2006; Liu et al. 2006, Xiong et al. 2010). Especially, PATC using moment-matching treats consistency of 

interrelated probabilistic characteristics (i.e., linking variable) and the probabilistic constraints using statistical 

moments such as mean and covariance. This approach is intuitive and straightforward, but can cause significant 

error when the propagated distribution is highly non-normal resulting in an unreliable system optimum. On the 

other hand, Ouyang et al. (2014) proposed sequential PATC (SPATC) which combines sequential optimization 

and reliability assessment (SORA) (Du and Chen 2004) and PATC to improve its efficiency by decoupling the 
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triple nested loop in PATC, and extended it to deal with mixed uncertainty including interval variables (Ouyang 

et al. 2018). However, reliability obtained from SORA is still inaccurate due to its approximations, and also MPP-

based uncertainty analysis (MPPUA) (Du and Chen 2001), one of uncertainty propagation methods, is still 

inefficient for accurate statistical information. Several researches suggested more efficient and accurate PATC 

methods in various ways but without intrinsic modification in uncertainty propagation of linking variables. 

Distribution types for the linking variables have to be predetermined based on prior knowledge that is a major 

weakness of moment-matching since it can cause a significant error when an inappropriate distribution is assumed.  

Therefore, the proposed research focuses on resolving accuracy issues existing in conventional PATC 

methods, especially PATC with moment-matching. For this purpose, a concrete framework called sampling-based 

PATC using uncertainty propagation specialized for linking variables is proposed. This allows each subsystem to 

be optimized more accurately under the scheme of the sampling-based RBDO and makes random linking variables 

consistent between subsystems. Thus, kernel density estimation (KDE) to transfer uncertainty of linking variables 

more accurately to corresponding subsystems and its stochastic sensitivity analysis to perform the sampling-based 

RBDO are developed in this study. Propagation and coordination for three types of design variables, which are 

local variables, coupling variables, and shared variables, are strictly defined depending on how it is manipulated 

as consistency constraints. Consequently, the sampling-based RBDO and augmented Lagrangian coordination and 

alternating direction method of multipliers (AL-AD) are successfully combined by applying KDE to connect both 

methodologies. In other words, individual optimizations of ATC are performed using the sampling-based RBDO 

to obtain an accurate optimum, and KDE connects individual optimizations to satisfy consistency constraints 

instead of moment-matching. 

The article is organized as follows. Brief reviews including existing PATC and sampling-based RBDO are 

presented in Section 2. In Section 3, the proposed method is explained with key ideas of the new framework. Then, 

feasibility and effectiveness of the proposed framework are verified in Sections 4 and 5. Conclusion and future 

research are given in Section 6. 
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2. Overview of Conventional Analytical Target Cascading Methodologies 

2.1 Non-hierarchical Analytical Target Cascading (ATC) 

The proposed research is originated from the non-hierarchical ATC without a multilevel concept to treat 

more common structure in the real world (Tosserams et al. 2010). Parent-children subsystems defined under strict 

conditions with respect to linking variables are unnecessary in the non-hierarchical ATC. Readers can refer to the 

literature (Kim et al. 2003a, b; Tosserams et al. 2006) for detailed descriptions of hierarchical ATC. Any linked 

subsystem in the non-hierarchical ATC can communicate with other subsystems directly without any restriction. 

General structure describing the relationship between neighbors (i.e., linked subsystems) is illustrated in Figure 1. 

Optimization of a Subsystem j in the non-hierarchical ATC can be formulated as (Tosserams et al. 2010) 
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where jx  represents the design variables for the Subsystem j, jx  represents the local design variables, jnr  

represents the responses corresponding to the target njt  from the Subsystem n. Similarly, jmt  represents the target 

corresponding to the response mjr  which is transferred from the Subsystem m. The functions jf , jg , and jh  

represent the local objective, inequality, and equality constraint functions, respectively. The function ja  is used 

to compute responses and jnS  is a binary selection matrix that selects components from ja . The ʐ  symbol means 

a term-by-term multiplication of vectors. The augmented Lagrangian coordination is applied in Eq. (1) where v  

is the Lagrange multiplier vector and w  is a penalty weight vector. It should be noted that both jx  and jx  in Eq. 

(1) are deterministic design variables. 
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Fig. 1 (a) Functional dependence structure of non-hierarchical ATC and (b) Target and response flow between 

Subsystem j and its neighbors (modified from Tosserams et al. 2010) 

 

2.2 Probabilistic Analytical Target Cascading (PATC) using Moment-matching 

PATC using moment-matching combined with AL-AD can be formulated as (modified from Liu et al. 

2006 and Tosserams et al. 2006) 
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where jX  is the random variable vector in the Subsystem j. Among the random design variables, jX  is the local 

design variable vector in the Subsystem j with known parametric distributions. Also, jmT  is assumed to follow a 

normal distribution for simplicity with the first two moments from the Subsystem m, which is denoted as mjɛ  and  

mjů , respectively. In contrasts, jnR  is the probabilistic response to be computed in the Subsystem j, and statistical 
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moments are used in the consistency constraints. Also, the probabilistic constraints are estimated by the moment-

matching method where k is constant corresponding to the given target reliability level. 

The moment-matching method has two accuracy issues. First, the distributions of all matching quantities 

and constraints need to be close to the normal distribution in order for the method to be accurate. Second, the first 

two statistical moments should have a dominating impact on the optimum (Liu et al. 2006). However, these two 

conditions may not be always satisfied in real engineering applications. 

 

2.3 Reliability Analysis and Sampling-based RBDO 

Reliability analysis to consider the uncertainties can be categorized in general into analytical and sampling 

methods. The analytical methods have been developed using approximated performance functions (Breitung 1984; 

Tu et al. 1999; Adhikari 2004; Lee et al. 2008, 2012; Lim et al. 2014; Kang et al. 2017). On the other hands, the 

sampling methods mainly use random sampling in the probabilistic domain (Denny 2001; Rubinstein and Kroese 

2016). So, design optimization using the sampling method for reliability analysis is called sampling-based 

reliability-based design optimization (RBDO) which is mainly employed in the paper due to its accuracy compared 

to the analytical methods (Lee et al. 2011a, b; Dubourg et al. 2011, 2013; Cho et al. 2014; Bae et al. 2018). 

Reliability analysis and stochastic sensitivity analysis are iteratively performed in the sampling-based RBDO to 

deal with probabilistic constraints. Unlike PATC using moment-matching which uses the first two moments of the 

subsystems, the proposed method applies the sampling-based RBDO to individual optimizations of the subsystems. 

In the sampling-based RBDO, the probability of failure can be computed as (Lee et al. 2011a, b) 
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where [ ]P¶ and [ ]E¶ represent a probability and an expectation measure, respectively; ( )G x  is the constraint 

function; 
FW  is the failure set defined as ( ) 0G >x ; ( )fX x  is the probability density function (PDF) of X . 
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Moreover, sensitivity of the probability of failure is obtained through the stochastic sensitivity analysis with the 

first-order score function using PDFs of random design variables. Since the reliability analysis in Eq. (3) requires 

a large number of samplings, surrogate modeling is often employed in the sampling-based RBDO. Surrogate 

modeling methods and sampling strategies (Zhao et al. 2011; Chen et al. 2015; Liu et al. 2016) are beyond the 

scope of the paper. The paper will focus on how to construct an overall framework by connecting PATC and 

RBDO to alleviate the accuracy issues in the conventional PATC. 

 

2.4 Kernel Density Estimation 

Kernel density estimation (KDE) is a nonparametric way to estimate underlying PDF of a random variable 

based on sample points from the true but unknown distribution (Chen 2017; Silverman 2018) as the summation of 

kernel functions generated by the sample points. Thus, the estimated kernel density function can be expressed as  
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where n is the number of samples, 
1 2, ,..., nX X X  are independent, identically distributed random samples with 

density function p, ( )k u  is the kernel function satisfying (u)du 1k
¤

-¤
=ñ , and h  is the positive smoothing 

parameter (i.e., bandwidth). It can be seen from Eq. (4) that the kernel function only depends on the smoothing 

parameter with the given samples. In this research, we use a second-order Gaussian kernel function which is the 

most popular kernel function. The smoothing parameter will be computed using the Rule-of-Thumb since the true 

distribution of a linking variable is unknown given by (Silverman 2018) 
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where 2Ĕs  is the sample variance and n  is the number of samples. The Rule-of-Thumb assumed that the true 

distribution is close to the normal distribution, but it gives a plausible PDF for any true distribution. The detailed 
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description of KDE and methods to determine an optimal smoothing parameter to reduce mean integrated square 

error (MISE) can be seen in the literature (Chen 2017; Silverman 2018).   

 

3. Sampling-based Probabilistic Analytical Target Cascading with Kernel Density Estimation 

3.1 Terminology and Remarks 

First, each variable and function for the proposed method have to be defined specifically and clearly. 

Assuming an extensive system with multiple subsystems, three types of variables can be classified in the 

decomposed subsystems: 1) local variables that belong to a single subsystem only, 2) coupling variables that 

behave as design variables in a subsystem and as responses in the corresponding subsystem, and 3) shared variables 

which are design variables in both linked subsystems. Coupling and shared variables are called linking variables. 

In order to prevent confusion in defining coupling variables, a coupling variable as a design variable is denoted as 

a coupling variable and a coupling variable as a response is denoted as a coupling response hereafter. Detailed 

notations to describe the proposed formulation are listed in Table 1 (Papalambros and Wilde 2017). 

 

Table 1 Detailed description of notations in the proposed framework 

Notation Description 

Local

jX  Random local variable in Subsystem j 

Shared Shared

jn nj¹X X  Random shared variable between Subsystem j and Subsystem n 

Coup Coup

jn nj¹X Y  Random coupling variable in Subsystem j and coupling response in Subsystem n 

Coup Coup

jn nj¹Y X  Random coupling response in Subsystem j and coupling variable in Subsystem n 

Coup

njy  Realization of 
Coup

njY  received from Subsystem n 

{ , , }Local Coup Shared

j j jn jn=X X X X  Random design variable in Subsystem j 

2( , )z m s Two-parameter distribution 

Ĕ( ; , )Coupp x s y  Kernel density estimation with respect to shifting parameter s and sample y 

Ĕ
jnR  Approximated response function to compute coupling response 

Coup

jnY  in Subsystem j 

Ĕ
jG  Approximated performance function for constraints in Subsystem j 



10 

 

,targetjP  Target probability of failure in Subsystem j 

v   Lagrange multiplier 

w   Penalty weight 

( )
j

jf m
X

  Local objective function in Subsystem j 

 

On the other hand, the coordination algorithm of ATC can be divided into the inner loop and the outer loop 

to achieve convergence and consistency of the system optimum. In the inner loop, individual optimizations of the 

subsystem are conducted in the presence of given parameters without any communication. In the outer loop, 

Lagrange multipliers and penalty weights are updated, and linking variables are transferred. In the perspective of 

the double-loop scheme, the sampling-based RBDO and surrogate modeling are performed in the inner loop of 

ATC, and uncertainty propagation is performed in the outer loop since uncertainties of linking variables will be 

propagated after RBDOs of all subsystems.  

 

3.2 Basic Formulation  for  Sampling-based PATC: Inner Loop 

3.2.1 Formulation 

In this section, sampling-based RBDO of a general subsystem and how to establish consistency constraints 

between linking variables are explained. The proposed optimization formulation of a subsystem with three kinds 

of consistency constraints can be expressed as 
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where z means any parametric distribution with two parameters, Ĕp  is shifting kernel density estimation, ĔjG  and 

Ĕ
jR  are Kriging surrogate models to approximate expensive performance function jG  and coupling response 

Coup

jnY  in subproblem j, respectively. The probabilistic constraints are evaluated using Eq. (3), and the augmented 

Lagrangian coordination is used in the formulation to reduce inconsistency between linking variables. 

The objective function in Eq. (6) includes a penalty function regarding three types of consistency 

constraints. First, ( ( ) )Coup
jn

Coup

njp m -
X

y ɛ  is associated with a coupling variable in Subsystem j and a coupling 

response in Subsystem n. ( )Coup

njmy  is the sample mean of 
Coup

njy  which is the realization of the random coupling 

response received from the Subsystem n, and Coup
jnX

ɛ  is the shifted mean using KDE based on 
Coup

njy . The second 

term ( ( ))Coup
nj

Coup

jnp m-
X
ɛ Y  also corresponds to a coupling variable in an opposite way. It is a coupling variable in 

Subsystem n and a coupling response in Subsystem j. The third term ( )Shared Shared
nj jn

p -
X X
ɛ ɛ  is related to a shared 

variable. Because distribution of the shared variable is known, uncertainty propagation using KDE is not necessary. 

Only the design point which is the mean is used in the consistency constraint. 
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3.2.2 Subsystem Composition 

Detailed composition of a general subsystem is illustrated in a single subsystem in Figure 2 where 

subscripts concerning the subsystem are omitted. A vector of local variables is denoted as 
Local

X  which contains 

all random local variables. A vector of shared variables is denoted as 
Shared

X  imposed to be consistent with linked 

subsystems. A vector of coupling variables is denoted as 
Coup

X . Since it is not a design variable in the system-

level, variability of 
Coup

X  should be assigned by the corresponding subsystem as a coupling response through KDE. 

On the other hands, responses to be computed in the subsystem can be categorized into performance functions and 

coupling responses. The performance function Perf
G  is involved in probabilistic constraints for the optimization, 

and the coupling response 
Coup

Y  is computed to propagate uncertainty.  

 

 

Fig. 2 Composition of a general subsystem 

 

Figure 3 shows a simple example with three subsystems. Each subsystem has own local variables, and 

there are two coupling variables and one shared variable. The arrow between two subsystem means the consistency 

constraint. Subsystems 1 and 2 are linked with a coupling variable. The coupling response in Subsystem 2 is 

propagated to Subsystem 1 with the distribution in red, and Subsystem 1 is optimized with the propagated 
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variability of 21

CoupY  returning 
12
Coup

X
m  to Subsystem 2. Therefore, the consistency constraint can be expressed as 

12
21( )Coup

Coup

X
Ym m- . Identical explanation can be applied for the relationship between Subsystems 1 and 3 with the 

distribution in blue. On the other hand, Subsystems 2 and 3 are linked with a shared variable only whose 

distribution is already known. Hence, its mean is transferred which means the consistency constraint is denoted as 

23 32
Shared SharedX X

m m- .  

 

 

Fig. 3 Flow of linking variables between linked subsystems 

 

3.2.3 Surrogate Modeling 

Surrogate modeling is utilized in the proposed PATC framework especially in the inner loop to alleviate 

expensive computational cost. For further efficiency improvement, sequential sampling strategies are oftern 

combined with surrogate modeling. The constraint boundary sampling (CBS) is adapted in this study to enhance 

accuracy and efficiency of surrogate models. The CBS criterion is formulated as (Lee and Jung 2008) 

 1
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where D  is the minimal distance from the current sample point to the existing sample points and Ĕ( )ig x  is the 

mean of the Kriging model at the current point x  and 
iMSE  indicates the variance of the current sample point. 

For further improvement in efficiency, the local window concept with CBS has been employed (Chen et al. 2014).  

One important thing to be discussed when using surrogate models is that the design space can be partitioned 

in the ATC structure. This means that high-dimensional design space can be decomposed into several low-

dimensional design spaces, and unlike existing ATC, it may be efficient than even All -in-One (AiO) which 

optimizes the entire system at once in the high-dimensional design space since the number of samplings to achieve 

acceptable level of accurcay increases exponentially with dimensions, called ñthe curse of dimensionalityò. 

Effici ency comparison with AiO is beyond the scope of the paper, so we will use it for reference only.  

 

3.3 Uncertainty Propagation and Sensitivity Analysis for  Kernel Density Estimation: Outer Loop 

3.3.1 Shifted Kernel Density Estimation  

In the outer loop of the proposed PATC, mean vectors including local, shared, and coupling variables and 

nonparametric distributions of coupling responses have to be exchanged, and the corresponding Lagrange 

multipliers and penalty weights are appropriately updated using AL-AD. Even though the sampling-based RBDO 

can be adapted into the optimization of individual subsystems, ATC structure always has linking variables 

transferred from linked subsystems. Therefore, the uncertainty propagation of the linking variable, the key concept 

of the proposed framework, have to be developed preferentially. This section introduces how to propagate 

uncertainties of coupling variables. 

A coupling variable is not a random design variable in the system-level but an intermediate response due 

to decomposition which is a function of design variables. Therefore, uncertainty quantification of a coupling 

variable is indispensable for reliability analysis and consistency constraints; however, explicit expression of its 

uncertainty cannot be achieved. In the proposed method, uncertainty quantification and propagation of a coupling 

variable are conducted using KDE. KDE with a set of given samples can represent a nonparametric distribution as 
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where Ĕ( )jp x  is the estimated PDF of the coupling response ( )jR x  computed in the corresponding subsystem, 

and n is the number of samples. If  the coupling variable has to estimate PDF from a linked subsystem as Eq. (8), 

it should be shifted based on the current design point. It means that statistical characteristics of the coupling 

response are maintained except for the design point (i.e., mean). In consequence, the PDF of a coupling variable 

through KDE and a shifting parameter can be expressed as 
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where 
,

Coup

j iy  is the i-th realization of the j-th coupling response from the linked subsystem, ( )Coupmy  is the mean 

of 
, ,1 ,2 ,{ , ,... }Coup Coup Coup Coup

j i j j j ny y y=y , and Coup
jx
m  is the design point of a corrsponding coupling variable. Through the 

shifting of the samples, only the numerical expectation of KDE is changed (Silverman 2018). In the proposed 

method, the consistency constraint can be arranged with the mean, but uncertainties are transferred as a 

nonparametric distribution without loss of any statistical information unlike PATC using moment-matching. 

 

3.3.2 Sensitivity Analysis for Kernel Density Estimation 

To perform sampling-based RBDO in the proposed PATC, stochastic sensitivity for probabilistic 

constraints with respect to random design variables needs to be estimated accurately. When distributions of random 

design variables are known, stochastic sensitivities using the first-order score function with respect to the mean 

are obtained even if input random variables are correlated (Lee et al. 2011a, b; Cho et al. 2016). However, since 
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KDE is used in the proposed PATC to approximate PDFs of coupling variables, analytical sensitivity analysis for 

KDE is derived in this section and its accuracy is verified using the finite difference method (FDM) in Section 4. 

Sensitivity of probability of failure with respect to the mean of the independent random variable including 

local and shared variables whose distributions are known is obtained as 
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where 
(1)sm is the first-order score function for mean (Lee et al. 2011b) and directly obtained from the known input 

distributions. In case of independent coupling variables, the first-order score function of KDE with respect to mean 

can be derived as 
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where x  is the shifted samples of a coupling response, and h is the smoothing parameter obtained using Eq. (5). 

It is noted that all data are shifted simultaneously meaning that the partial derivative with respect to the mean is 

one. Plugging the first-order score function of KDE with respect to independent random variables in Eq. (11) into  

Eq. (10) yields sensitivity of probability of failure for coupling variables.  

 

3.4 Flowchart of Methodology  

This section explains the proposed algorithm in detail using a flowchart and conceptional system 

framework. Figure 4 describes the overall flowchart of the proposed PATC. First, deterministic optimizations of 

individual subsystems updating Kriging models have to be performed iteratively while the Lagrange multipliers 

and the penalty weights are updated using AL-AD. Once the deterministic ATC successfully converges to the 

optimum, it becomes the initial point of the sampling-based PATC.  
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Fig. 4 Overall flowchart of the proposed PATC 

 

Figure 5 shows a conceptional system framework of a vehicle example using a three-subsystem model with 

own finite element analysis (FEA) model for performance computation. Subsystem 1 for the vehicle body model 

is influenced by Subsystems 2 and 3 for the vehicle component models because Subsystems 2 and 3 have coupling 

responses which are coupling variables in Subsystem 1. It is shown that FEA is performed only on the specific 

sampling points, and the sampling-based RBDO is performed using the Kriging models. Especially, the linking 
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variable is propagated to Subsystem 1 through KDE, and then reliability analysis and sensitivity analysis will be 

carried out iteratively.  

 

 

Fig. 5 System framework of the proposed methodology (reproduced from Altair Hyperworks) 

 

It is shown that three subsystems have divided dimensions such as N, M, and L in Figure 5. As mentioned 

in Section 3.2, if these three subsystems combine into a single system, the total dimension is definitely less than 

N+M+L due to the duplicated linking variables. However, the number of sampling points in single high-

dimensional space for satisfying acceptable accuracy may be larger than several low-dimensional design spaces. 

For instance, when a 15-dimensional system may be decomposed into four 5-dimensional subsystems, the number 

of samplings to construct the surrogate model on 15-dimensional design space is expected to be much larger than 

decomposed 5-dimensional design spaces. This could be one application of the proposed PATC to improve 

efficiency of high dimensional large-scale design optimization problems. 
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4. Numerical Example: Three-dimensional Mathematical Example 

A three-dimensional mathematical example is employed to demonstrate feasibility of the developed 

framework compared to AiO and PATC using moment-matching in terms of accuracy and efficiency. In addition, 

the proposed sensitivity analysis for KDE is compared with FDM. It is expected that the proposed framework 

shows comparable efficiency in the decomposed low-dimensional subspaces than the high-dimensional AiO space 

and high accuracy through the uncertainty propagation of nonparametric distributions without any loss of 

information unlike the moment-matching method.  

 

4.1 Formulation of Three-dimensional Mathematical Example 

RBDO with the three-dimensional system is written as 
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   (12) 

where three random design variables follow the normal distribution and the target probability of failure is set to 

5% in all constraints. Generally, ATC assumes that Eq. (12) is a system optimization which cannot be solved in 

AiO strategy. Thus, Eq. (12) is used to validate the system optimum and compare computational cost with the 

proposed PATC. 
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4.2 Formulation of Decomposed Three-dimensional Mathematical Example 

The decomposed structure through the proposed framework is described in Figure 6 which show three 

types of design variables and two types of responses. There is no shared variable, and Subsystem 1 has a coupling 

response, and Subsystem 2 has the corresponding coupling variable. There is one consistency constraint with 

respect to the coupling variable vanished in the system-level optimization in Eq. (12).  

 

 
Fig. 6 Structure of decomposed subsystems 

 

The optimization of Subsystem 1 is formulated as 
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where 
1 1 2( , )Y X X  is the coupling response to be transferred to Subsystem 2. The consistency constraint using 

1(Y )m  and 
4X

m  is combined into the objective function as a penalty function. Only local variables are random 

design variables in Subsystem 1. 

Similarly, the optimization of Subsystem 2 is formulated as 
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where 
4X  is the coupling variable propagated from Subsystem 1 and its uncertainty is described with the shifted 

KDE explained in Section 3.3.1. There are two random design variables which are a local variable and coupling 

variable with no coupling response, and other properties are analogous with Subsystem 1. It is noted that 

Subsystems 1 and 2 can be combined with substitution of the coupling response 
1 1 2( , )Y X X  as a function of design 

variables. 

 

4.3 Validation of Sensitivity Analysis for  Kernel Density Estimation 

In this section, accuracy of the proposed sensitivity analysis is compared with numerical sensitivity analysis 

using 
1G  and 

2G  in Eq. (12). Variability of 
1X  is quantified by KDE with 50 samples drawn from the known 

parametric distribution, and 
2X  is assumed to follow a normal distribution. Comparison tests are performed by 

varying the true distribution of 
1X  such as Normal, Lognormal, and Gumbel distributions, and the results are 

compared to FDM with various perturbations such as 1.0%, 0.5%, and 0.1%. The number of samples drawn from 
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KDE and the normal distribution to compute the probability of failure is 107 at two different design points which 

are 
T

1 [4.56,1.86]=d  and 
T

2 [4.32,1.95]=d  with 0.5s=  for both random variables. 

Table 2 shows the results of the proposed and numerical sensitivity  analysis for 
1G  and 

2G  in Eq. (12). 

Discrepancies between two sensitivity analysis results in case of 0.1% perturbation are also shown in parenthesis. 

The numerical sensitivity analysis is performed using fixed random seed to eliminate sampling uncertainty, and 

the proposed method shows accurate results regardless of the true distribution type or design point location. 

 

Table 2 Results of sensitivity analysis with numerical and analytical methods 

True Distribution 

of 
1X  

Design 

Sensitivity 1G  at 
1d   

2G  at 
1d  

1G  at 
2d  

2G  at 
2d  

Normal 

FDM (1.0%) -0.0975 0.0823 -0.1287 0.0275 

FDM (0.5%) -0.1006 0.0798 -0.1314 0.0264 

FDM (0.1%) -0.1027 0.0774 -0.1346 0.0249 

Proposed -0.1020 (0.68%) 0.0764 (1.30%) -0.1351 (0.37%) 0.0250 (0.40%) 

Lognormal 

FDM (1.0%) -0.0987 0.0768 -0.1305 0.0291 

FDM (0.5%) -0.1012 0.0742 -0.1340 0.0278 

FDM (0.1%) -0.1037 0.0724 -0.1395 0.0272 

Proposed -0.1026 (1.07%) 0.0721 (0.41%) -0.1365 (2.19%) 0.0270 (0.74%) 

Gumbel 

FDM (1.0%) -0.0951 0.0784 -0.1338 0.0339 

FDM (0.5%) -0.0975 0.0761 -0.1370 0.0333 

FDM (0.1%) -0.1012 0.0752 -0.1381 0.0330 

Proposed -0.1001 (1.09%) 0.0727 (3.43%) -0.1401 (1.42%) 0.0322 (2.58%) 

 

4.4 Results of Sampling-based PATC 

AiO sampling-based RBDO results using Eq. (12) are listed in Table 3. Initial samples are obtained by the 

grid sampling on the whole design space with different levels, and the number of sequential samplings means 

additional samples during the optimization. There are five constraints among which only three are active. The 

probability of failure computed from the exact functions is written in the last column for each case. Definitely, 

AiO shows high accuracy, but requires a number of sequential samplings regardless of the number of the initial 

samples. 

 

Table 3 Required samples and optimums obtained from AiO with different initial sampling 
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Initial grid samples Additional samples Optimum Probability of failure (%)  

125 (5-level) 50 { 3.7549, 2.6423, 4.0267} T [5.00, 5.01, 4.98] 

64 (4-level) 48 {3.7541, 2.6461, 4.0309}T [4.96, 4.97, 5.03] 

27 (3-level) 51 {3.7539, 2.6446, 4.0281}T [4.99, 5.00, 4.99] 

 

As mentioned before, the proposed method uses the optimum of deterministic ATC as the initial design. 

In each 2D subsystem, grid sampling with 5-level full factorial design is adopted to generate initial samples, which 

means that 25 samples are used to construct initial Kriging models for the constraints and coupling response as 

shown in Figure 7. The solid and dotted lines in the figure mean the true and approximated limit-state functions 

by the Kriging model using 25 grid samples marked as black solid circles, respectively.  

 

 

Fig. 7 True and approximated limit-state functions in Subsystem 1 

 

Using the approximated limit-state functions in Figure 7, the proposed PATC is performed based on the 

algorithm in Figure 4. The tolerance for convergence is set to 35 10-³ , the number of MCS samples is 55 10³ , 

and the number of samples for the stochastic sensitivity proposed in Section 3.3.2 is 410 . All initial Lagrange 
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multipliers and penalty weights are set to 1 and 0, respectively. A fixed local window whose radius is 0.3 tb for 

deterministic ATC and 1.6 tb for PATC is used for simplicity. 

Figure 8 illustrates additional samples, updated Kriging model as dotted lines, and the design point in 

Subsystem 1 at the end of each process of ATC and sampling-based PATC. It is shown from the figure that the 

additional samples are located in the vicinity of the limit -state functions. Table 4 shows optimization results of the 

proposed method. From Tables 3&4, it can be seen that the optimum from the proposed PATC is very close to the 

ones by AiO, and the number of total samples for the proposed PATC is less than AiO in the 5-level grid sampling 

case. From Table 5 which shows optimization results by PATC using moment-matching, it can be seen that 

probability of failure at the optimum is inaccurate due to the normality assumption on the coupling variable 

compared with the proposed method. It is noted that only mean is used to construct the consistency constraint 

since the standard deviation goes to zero during PATC using moment-matching. Therefore, the standard deviation 

is merely given from Subsystem 1. Figure 9 shows difference between two methods in estimation of distribution 

of the coupling variable. The difference is because PATC using moment-matching assumes the distribution as a 

normal distribution with estimated mean and variance, whereas the proposed PATC estimates the distribution 

using KDE. Moreover, the difference will be larger as non-normality of the coupling variable is much larger. 
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Fig. 8 Optimum and additional samples in the design space of Subsystem 1: (a) ATC (b) Sampling-based PATC  

 

Table 4 Optimization results of the proposed sampling-based PATC 

 Subsystem 1 Subsystem 2 

Initial grid samples 25 (52) 25 (52) 

Additional samples during ATC 10 2 

Additional samples during PATC 6 6 

Total samples 41 33 

Mean of coupling variable  2.6056 2.6033 

System optimum {3.7550, 2.6438, 4.0323} T 

Probability  of failure (%) [5.02, 4.95, 5.01] 

 

Table 5 Optimization results of PATC using moment-matching 

 Results 

Moments of coupling variable  22.6676, 0.7647m s= =   

System optimum {3.7970, 2.5855,4.0660}T 

Probability of failure (%) [5.06, 3.89, 5.94] 
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Fig. 9 Distribution of coupling variable in case of PATC with moment-matching and proposed PATC  

 

5. Engineering Example: Roof Assembly Optimization  

An engineering example incorporating FEA models is employed to verify feasibility of the proposed 

method in real complex engineering applications. This example is originated from the optimization of a bus body 

structure (Kang et al. 2014b) and modified by Jung et al. (2018) for simplification. In this paper, optimization of 

the components ī cross-sections of beams ī is refined to increase the number of design variables. There is a roof 

assembly optimization to satisfy displacement constraints with respect to the bending and torsion as shown in 

Figure 10 (a). On the other hand, the roof assembly consists of various types of the beams, and two types of I-

beams used in the roof assembly shown in Figure 10 (b) are selected for optimization. Thus, there are six random 

design variables in each cross-section of the beam, and linking variables are the cross-sectional area and two 

perpendicular moments of inertia (MOI) of the cross-section described in Figure 11. In the roof optimization, the 

objective function is a penalty function for consistency constraints, and design variables are coupling variables 

that are MOI linked with each beam without any local and shared variable. In the optimization of beam, the 

objective function is mass and penalty function for consistency constraints, and there are only local variables to 

be optimized. 
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Fig. 10 (a) FEA model of a roof assembly including various beams and (b) design variables in the cross-section 

of I-beam   

 

 

Fig. 11 Decomposition details for a roof assembly optimization with two types of beams  

 


