MO833 AI-BASED MOBILITY DESIGN
CLASS MATERIALS
Lecture Slides: KLMS
REFERENCE VIDEOS
Youtube (In Korean): Link
CODE
Prepare
1) This class uses Google Colab for practice. If you prefer, you can install Jupyter Notebook and TensorFlow on your personal computer. See below for how to prepare.
TensorFlow + Colab + Python
2) This class uses bracket data, which is structural design data. Please download below.
data_3000, data_1000
Convolutional Neural Network (CNN)
1) Colab
--MNIST: CNN_Sequential, CNN_Functional
--Bracket: CNN_Sequential
2) Jupyter Notebook
--MNIST: CNN_Sequential, CNN_Functional
--Bracket: CNN_Sequential
# Compare learning methods (MNIST)
Sequential+ModelFit / Sequential+GradientTape /
Functional+ModelFit / Functional+GradientTape /
Subclassing+ModelFit / Subclassing+GradientTape
Ensemble
Autoencoder (AE) & Anomaly Detection
1) Colab
--Bracket: Autoencoder, Anomaly Detection
2) Jupyter Notebook
--Bracket: Autoencoder, Anomaly Detection
# Compare learning methods (Bracket)
ModelFit / GradientTape
Variational AutoEncoder (VAE)
1) Colab
--Bracket: VAE
2) Jupyter Notebook
--Bracket: VAE
# Compare learning methods (Bracket)
ModelFit / GradientTape
Generative Adversarial Network (GAN)
1) Colab
--Bracket: GAN
2) Jupyter Notebook
--Bracket: GAN
# Compare learning methods (Bracket)
ModelFit / GradientTape
Advanced Models
1) Convolutional Autoencoder (CAE)
--Bracket: ModelFit / GradientTape
2) Deep Convolutional GAN (DCGAN)
--MNIST: Keras
3) Conditional GAN (cGAN)
--MNIST: Keras
4) Boundary Equilibrium GAN (BEGAN)
--MNIST: Keras
Machine Learning Models
0. Preprocessing
1) Colab: CODE
2) Jupyter Notebook: CODE
1. Logistic Regression: CODE
2. Support Vector Machine (SVM): CODE
3. Decision Tree & Random Forest: CODE
All copyright © reserved by Smart Design Lab 2018