COE491 SMART MOBILITY DESIGN FOR DESIGNER, ENGINEER, AND DATA SCIENTIST
FALL 2023
CLASS MATERIALS
Lecture Slides: KLMS
REFERENCE VIDEOS
Youtube (In Korean): Link
CODE
Prepare
1) This class uses Google Colab for practice. If you prefer, you can install Jupyter Notebook and TensorFlow on your personal computer. See below for how to prepare.
TensorFlow + Colab + Python
2) This class uses bracket data, which is structural design data. Please download below.
data_2000, data_1000, data_500
1. Convolutional Neural Network (CNN)
1) Colab
--Bracket(Pytorch): CNN_Sequential
--Bracket(TensorFlow): CNN_Sequential
--MNIST(TensorFlow): CNN_Sequential, CNN_Functional
2) Jupyter Notebook
--Bracket(TensorFlow): CNN_Sequential
--MNIST(TensorFlow): CNN_Sequential, CNN_Functional
# Compare learning methods (MNIST)
Sequential+ModelFit / Sequential+GradientTape /
Functional+ModelFit / Functional+GradientTape /
Subclassing+ModelFit / Subclassing+GradientTape
Ensemble
2. Autoencoder (AE) & Anomaly Detection
1) Colab
--Bracket: Autoencoder, Anomaly Detection
2) Jupyter Notebook
--Bracket: Autoencoder, Anomaly Detection
# Compare learning methods (Bracket)
ModelFit / GradientTape
3. Generative Adversarial Network (GAN)
1) Colab
--Bracket: GAN
2) Jupyter Notebook
--Bracket: GAN
# Compare learning methods (Bracket)
ModelFit / GradientTape
Option 1: Variational AutoEncoder (VAE)
1) Colab
--Bracket: VAE
2) Jupyter Notebook
--Bracket: VAE
# Compare learning methods (Bracket)
ModelFit / GradientTape
Option 2: Advanced Models
1) Convolutional Autoencoder (CAE)
--Bracket: ModelFit / GradientTape
2) Deep Convolutional GAN (DCGAN)
--MNIST: Keras
3) Conditional GAN (cGAN)
--MNIST: Keras
4) Boundary Equilibrium GAN (BEGAN)
--MNIST: Keras
Competition
CNN Bracket(PyTorch): Test
CNN Bracket(TensorFlow): Test
All copyright © reserved by Smart Design Lab 2018